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Abstract

We present a deep learning model for the automatic de-
tection of murmurs and other cardiac abnormalities from
the analysis of digital recordings of cardiac auscultations.
This approach was developed in the context of the George
B. Moody PhysioNet Challenge 2022.

More precisely, we consider multi-objective neural net-
works, with several Transformer blocks at their core,
trained to perform 3 distinct tasks simultaneously: murmur
detection, outcome classification and audio signal segmen-
tation. We also perform pre-training with the 2016’s Chal-
lenge data.

We entered the challenge under the team name matLis-
boa. Our results on the hidden test dataset were:
Murmur score (weighted accuracy): 0.735 (ranked 15th).
Outcomes score (cost): 12593 (ranked 16th).

1. Introduction

The detection of murmurs and other cardiac abnormali-
ties via cardiac auscultation provides critical insights into
heart malfunctioning. The design of algorithms for the au-
tomatic detection of such pathologies can provide valuable
information in situations where there is difficulty in ac-
cessing health services. This is in essence the goal of the
George B. Moody PhysioNet Challenge 2022 [1].

More specifically, this year’s challenge proposes two
distinct but related classification tasks of patient data [2]
(that, in particular, include audio recordings of cardiac aus-
cultation and meta data regarding sex, age and other indi-
vidual features):
1. Murmur classification: classify the data for each indi-
vidual patient in terms of the existence of murmurs, by
associating a label “Present”, “Unknown” or “Absent”;
2. Outcome classification: obtain, for each patient, a clin-
ical outcome classifier in terms of “Abnormal” or “Nor-
mal”.

The performance of the submitted algorithms is then eval-
uated in each task separately by its own scoring metric that
aggregates the algorithmic predictions of all patients: in
the case of murmur classification the final goal is to max-
imize a given weighted accuracy metric (smurmur) and
in the second task the goal is to minimize a total out-
come coast (coutcome) that models the algorithm’s effi-
ciency/safety.

Our approach is to try to solve both problems at once by
using multi-objective deep neural networks, that receive as
input (a pre-processed version) of a recording (of a cardiac
auscultation) and output two distinct probability distribu-
tions, one for each classification task. In fact, in order to
reduce overfitting, we also train our networks to perform a
third (unrequested) task, which corresponds to the segmen-
tation of each recording, in terms of S1, Systolic, S2 and
Diastolic waves. This final task works as a regularization
mechanism, that complements the use of dropout.

The core of our network’s architecture is composed of
several Transformer blocks [3]. As is well known, this
type of architecture was first developed, with remarkable
success, to tackle problems in natural language process-
ing (NLP) and its main defining feature is a learnable self-
attention mechanism that provides valuable contextual and
positional information about the relation between individ-
ual data segments/tokens (for instance “words”) within the
overall structure of a given complete data input (for in-
stance a “sentence”). In the meantime Transformers have-
been applied in multiple contexts from image processing
to reinforcement learning.

In our framework, after applying the Short Time Fourier
Transform and a convolution network block, each digital
recording of a cardiac auscultation becomes a sequence of
vectors, with fixed dimension, that, in analogy, we may
consider as token embedding. By an appropriate super-
vised learning procedure (that we will describe below)
we expect the Transformers to learn and encode relevant
relations between the individual time-steps that can then
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be further processed to yield the desired classifications.
Stretching the NLP analogy a bit further, we can think of
the Murmur and Outcome classification tasks as a kind of
Sentiment Analysis.

Following a suggestion by one of the referees, we also
tried to input meta data (age, sex, etc) information into our
networks in order to understand its influence in the learn-
ing procedure 1.

Finally, to reduce overfitting, the biggest challenge in
dealing with these large network models, we also tested
pre-training with the 2016’s Challenge data [4] and intro-
duce data augmentation mechanisms.

2. Methods

2.1. Preprocessing

Motivated by both the need to compress the size of the
original data, and by the fact that heart murmurs “are more
significant when the flow is more turbulent” [2] and tur-
bulence has characteristic profiles in frequency space [5],
we start by applying the Short Time Fourier Transform to
the audio signals. This requires the choice of two hyper-
parameters: frame length, that we set to 32 × 10−3 sec-
onds, and frame step, fixed at 16 × 10−3 seconds; these
values correspond to the best compromise between qual-
ity of results and processing time that we were able to find
experimentally.

Part of the provided training data was segmented into
S1, Systolic, S2 and Diastolic waves, a relevant informa-
tion that we used as labels for the training of the segmen-
tation block of our networks (see Fig. 1). As, in general,
only a partial segmentation of each signal was provided,
we designed the loss function to only be sensitive to the
segmented parts of the training input signals.

Our networks process each audio signal individually,
while the goal of the challenge is to provide classifications
at the level of each patient – for which, typically, there
exists multiple audio recordings. For the Murmur classifi-
cation task this creates no major problems, since the train-
ing data clearly identifies the corresponding label for each
recording. However, for the Outcomes classification task,
the training labels were provided at the level of each indi-
vidual patient and, for the lack of a better idea, we decided
to assign the same label to all of the patient’s recordings.

We have also designed a simple data augmentation
mechanism: instead of considering the complete audio sig-
nals as inputs – recall that these signals have, in general
quite different sizes to start with – we took as inputs se-
quential portions of the signals with a randomly chosen
size and randomly chosen initial starting time. This al-

1Note for instance that, in the training data, all “Adolescent” patients
with audible murmurs were labeled “Abnormal”, in the outcome category.

lowed to increase the size of the data considerably, which,
as is well known, is of paramount importance to deal with
overfitting.

2.2. Model’s architecture

We designed our neural networks to simultaneously out-
put a probability distribution over the labels “Present”,
“Unknown” or “Absent”, concerning the presence of mur-
murs, and also a probability of “Abnormal” and “Normal”,
as clinical outcome; this information is later aggregated to
produce classifications at the level of each patient. Our
models also produce a third kind of output corresponding
to the auxiliary task, introduced by the authors to reduce
overfitting, that attempts to obtain the segmentation of the
original audio signals into “S1”, “Systolic”, “S2”, “Dias-
tolic” and “Unclassified” (see Fig. 1).

To perform this multitask learning our network starts
with a common block that later splits into three branches,
one for each task (see Fig. 2). In our approach this requires
a considerably big network with approximately 654,000
trainable parameters.

Common block:
As the name indicates this component is the same for all

tasks and, moreover, it is by far the largest component of
our network containing 567,000 parameters. It starts with
3 convolution blocks with 32, 64 and 128 filters, respec-
tively; each of these blocks is interleaved with batch nor-
malization, maxpooling and spatial dropout layers. Then
we use a positional embedding layer that adds learnable
positional information to each vector. In the final step,
of this common component, this information is used by
3 consecutive Transformer blocks, with 8 heads each.

Segmentation block:
Is essentially a linear layer with the same weights for

each time-step and a five dimensional output vector (one
for each segmentation label).

Output/Murmur classification blocks:
These blocks are essentially similar, the main difference

being the output dimensions: 3d for the Murmur classifi-
cation and 1d for the Outcomes. They are composed by
another Transformer block, with 8 heads, followed by a
feedforward network (with dropout) applied solely to the
first time-step of the sequence outputted by the last Trans-
fomer.

We have also considered other variations of the de-
scribed model: either by including metadata information
(regarding sex, age, etc) as a delayed input added in the
final feedforward stages of the Output/Murmur classifica-
tion blocks; or by feeding intermediate information of the
Murmur classification block into the Outcomes classifica-
tion block; or both.
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Figure 1. Segmentation task: the red line corresponds to
the labels and the blue line to the model’s prediction.

2.3. Training procedure

We perform a pre-train using the 2016’s Challenge data.
Afterwards, we train the models with this year’s data by
setting the initial weights of the common block to be the
pre-trained weights; the weights of the task-specific blocks
are trained from scratch using the 2022 data.

During training, the loss functions used in the Mur-
mur/Outcome tasks are adapted/simplified versions of the
Challenge scoring metrics (smurmur and coutcome) suit-
ably weighted with cross-entropy losses. For the segmen-
tation task we use a squared error loss that only considers
the segmented components of the recordings in the training
set.

2.4. Post-processing – the classification of
each patient’s data

As said before, our networks work at the level of indi-
vidual recordings. To obtain classifications at the level of
each patient, we collect the outputted probability distribu-
tions associated to all the recordings of a given patient’s
data and assign labels according to the following simple
rules:
• Murmur classification: If at least one of the murmur out-
puts predicts maximum probability for “Present”, we as-
sign that label to that patient’s data; else, if at least one of
the outputs predicts maximum probability for “Unknown”,
that’s the label assigned; otherwise we assign the label
“Absent” to the patient’s data.
• Output classification: If at least one of the outcome out-
puts has (a probability) value below 0.5 we assign the label
“Abnormal” to that patient; otherwise, we assign the label
“Normal”.

Figure 2. A schematic version of our network’s architec-
ture.

Table 1. Results for the murmur detection task on the
public training dataset (10-fold cross-validation), hidden
validation and hidden test datasets.

Training Validation Test Ranking
0.6713± 0.059 0.754 0.735 15/40

3. Results

Our model’s results for the murmur detection task on
the 10-fold cross-validation on the public training dataset,
hidden validation and hidden test datasets are presented in
Table 1.

For the outcomes identification task, we present the re-
sults on Table 2.

From a total of 78 teams that participated in the chal-
lenge, we ranked 15th (out of 40 teams that were eligible
for rankings) and 16th (out of 39) on the challenge official
murmur entries and official outcome entries respectively.
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Table 2. Results for the outcomes identification task on the
public training dataset (10-fold cross-validation), hidden
validation and hidden test datasets.

Training Validation Test Ranking
13263± 898 9512 12593 16/39

4. Discussion

In this paper we present some results concerning the
use of multitask and transfer learning techniques for the
training of large neural networks (with Transformer core
blocks) to deal with the automatic classification of audio
recordings of cardiac auscultations. These results show
that this is a promising approach, a conclusion that we base
of the following facts: our networks systematically outper-
form the safe strategy of classifying each patient’s data as
“Present” and “Abnormal”; we obtained “good” scores in
both tasks of the official phase, specially in the Murmur
classification task (see Sec. 3).

There is a significant variance in the results of our model
with different training runs: concerning murmur classifi-
cation, our first and second official submissions contain
exactly the same code and pre-trained weights, but their
weighted accuracy on the hidden validation dataset were
0.754 and 0.716.

The performance of our networks in the Outcomes task
is weaker than in the Murmur classification. We believe
that this unfortunate situation as its roots in the fact that for
each patient’s data, in the training set, we have labeled all
its audio recordings in the same way. To see why this might
be problematic, consider, for instance, that this forces our
networks, that work at the level of individual recordings, to
learn to assign a label of “Abnormal” to recording where
no abnormality is detectable.

Our multitask approach, in particular, allows our net-
works to learn relations between the different tasks, which
are clearly correlated: for instance, a murmur classification
of “Present” strongly suggests an outcome classification of
“Abnormal”, a relation that, unfortunately, our networks
tend to take too literally. In this context it is also intriguing
to inquire if the use of other (meta) data, e.g. the patient’s
sex and age, might help the networks create more intercon-
nections between tasks. With this in mind, in some experi-
mental runs, we have inputed meta-data into our networks,
but due to the instability in training it is very hard to access
if this has any particular practical value.

Moreover, multitasking works as a regularization tech-
nique against overfitting and for that reason we have
decided to train the networks to perform a third task.

Nonetheless, overfitting still plagues our models, even af-
ter using transfer learning by pre-training part of our net-
work with the 2016’s Challenge data.

Even though we believe that our approach is promising,
it is clear that new ideas are needed, as well as more work
to fine tune our models, in order to deal with overfitting,
make the training procedure more stable and obtain better
and more reliable results.
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